مقایسه خواص مکانیکی پوشش‌های پلاسمایی نانوساختار Cr2O3 و Cr2O3-20YSZ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر

2 مرکز آموزشی تحقیقاتی مواد فلزی، دانشگاه صنعتی مالک اشتر تهران

چکیده

در این پژوهش پوشش‌های نانوساختار Cr2O3 و Cr2O3-20YSZ از طریق فرآیند پاشش پلاسمایی اتمسفری(APS) پاشش داده شد و متعاقب آن خواص مکانیکی آن‌ها نظیر چقرمگی شکست، سختی و استحکام چسبندگی ارزیابی و با یکدیگر مقایسه گردیدند. بدین منظور، ابتدا نانوپودرهای Cr2O3 و YSZ از طریق 5 ساعت آسیاکاری در آسیاب سیاره‌ای با انرژی بالا تولید شده و سپس به نسبت حجمی مشخص با یکدیگر مخلوط شدند. جهت استفاده مخلوط پودری در فرآیند پاشش پلاسمایی، پودرها به‌صورت آگلومره درآمده و بر زیرلایه فولادی 304L پاشش داده شدند. مطالعه ریزساختار پودرها و پوشش‌ها از طریق میکروسکوپ الکترونی روبشی گسیل مغناطیسی(FE-SEM) مجهز به آنالیز عنصری(EDS) و همچنین آنالیزهای پراش پرتوایکس(XRD) انجام گرفت. آنالیزهای اشعه ایکس از پودرهای آسیاب شده و پوشش‌ها نشان داد که هیچ فاز جدیدی در حین آسیاکاری و پاشش پلاسمایی ایجاد نگردیده است. تخلخل پوشش‌ها از طریق آنالیز تصاویر میکروسکوپ نوری از سطح مقطع پوشش‌ها انجام گرفت. ارزیابی خواص مکانیکی پوشش‌ها نشان داد که هر دو پوشش دارای استحکام چسبندگی بالا در محدوده 49-43 مگاپاسکال بودند. اگرچه با اضافه کردن نانوذرات YSZ به پوشش اکسید کروم، سختی پوشش کاهش جزیی یافت، اما چقرمگی آن بواسطه استحاله زیرکونیای تتراگونال به میزان عمده‌ای افزایش پیدا کرد.
 
 

کلیدواژه‌ها


1. B.Basu and K. Balani, Advanced Structural Ceramics, 1st ed., Wiley-American Ceramic Society,( 2011).
 2. L. L. Mishnaevsky, Three-dimensional numerical testing of microstructures of particle reinforced composites, Acta Mater., 52 (2004) 4177–4188.
3. M.M. El Rayes, H.S.Abdo and K.A.Khalil, Review paper: Erosion - Corrosion of Cermet Coating, J. Electrochem. Sci., 8 (2013) 1117–1137.
4. R. Banergee and I. Manna, Ceramic Nanocomposites, Woodhead Publishing, 2013.
5. E.I. C. Suryanarayana, T. Klassen, Synthesis of nanocomposites and amorphous alloys by mechanical alloying, Mater. Sci., 46 (2011) 6301–6315.
6. J. Karch and R. Birringer, Ceramics ductile at low temperature, Nature, 330 (1987) 556–558.
7. W.M. Rainforth, The wear behaviour of oxide ceramics-A Review, Mater. Sci., 39 (2004) 6705–6721.
8. B. Cantor, F.P.E. Dunne and I.C. Stone, Metal and Ceramic Matrix Composites, 1st ed., CRC Press, (2003).
9. M. Aliofkhazraei, Anti-Abrasive Nanocoatings Current and future applications, chapter 19, Woodhead Publishing in Materials, (2015).
10. N. Krishnamurthy and M.S. Perashanthareddy, A Study of Parameters Affecting Wear Resistance of Alumina and Yttria Stabilized Zirconia Composite Coatings on Al-6061 Substrate, Int. Sch. Res. Not., 2012 (2012) 13 pages.
11. J.O. Berghaus, J.G. Legoux, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, Therm. Spray Technol., 17 (2008) 91–104.
12.          J. Lin, Y. Huang and H. Jaung, Damage resistance, R-curve behavior and toughening mechanisms of ZrB2-based composites with SiC whiskers and ZrO2 fibers, Ceram. Int., 41 (2015) 2690–2698.
13. L. Chen, Y. Wang and H. Shen, Effect of SiC content on mechanical properties and thermal shock resistance of BN–ZrO2–SiC composites, Mater. Sci. Eng., 590 (2014) 346–351.
14. O. Knotek, Thermal Spraying and Detonation Gun Processes, William Andrew Publishing, Chapter 3, New York, 2000.
15. E.F. Wank, B. Wielage and G. Reisel, T. Grund, Performance of Thermal Spray Coating under Dry Abrasive Wear Conditions, 4th Int. Conf. Coatings. (2011).
16. A. Vardelle, Ch. Moreau and N.J. Themelis, A Perspective on Plasma Spray Technology, Plasma Chem Plasma Process., 35 (2015) 491–509.
17. G. Bolelli, V. Cannillo and L. Lusvarghi, Wear behaviour of thermally sprayed ceramic oxide coatings, Wear., 261 (2006) 1298–1315.
18. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, (2004).
19. A.Cellard, V. Garnier, and G. Fantozzi, Wear Resistance of Chromium Oxide Nanostructured Coatings, Ceram. Int., 35 (2009) 913–916.
20. Y. Sert and N. Toplan, Tribological behavior of a plasma-sprayed Al2O3-TiO2-Cr2O3 coating, Mater. Tehnol., 47 (2013) 181–184.
21. M. Szafarska and J. Iwaszko and, Laser Remelting Teratment of Plasma-Sprayed Cr2O3 Oxide Coatings, Arch. Metall. Mater., 57 (2012) 215–221.
22. J.H. Ouyang and S. Sasaki, Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings, Wear, 249 (2001) 56–66.
23. P. Ctibor, I. Pıs and J. Kotlan, Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2, Therm. Spray Technol., 22 (2013) 1163–1169.
24. J.J. Swab, Role of Oxide Additives in Stabilizing Zirconia for Coating Applications, Elsevier Science Publisher BV, 2001.
25. S.T. Aruna, N. Balaji and K.S. Rajam, Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria, Mater. Charact., 62 (2011) 697–705.
26. A.N. Khan, J. Lu and H. Liao, Heat treatment of thermal barrier coatings, Mater. Sci. Eng., 359 (2003) 129–136.
27.          G. Witz, V. Shklover, and W. Steurer, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Am. Ceram. Soc., 90 (2007) 2935–2940.
28. N. Zhang. and M.A. Zaeem, Competing Mechanisms between Dislocation and Phase Transformation in Plastic Deformation of Single Crystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars, Acta Mater., 120 (2016) 337–347.
29. O. Roberts, A.J.G. Lunt, and S. Ying, A study of phase transformation at the surface of a zirconia ceramic, in: Proc. World Congr. Eng. 2014 Vol II, 2014.
30. G.A. Gogotsi, Fracture Toughness of Ceramics and Ceramic Composites, Ceramics International, 29 (2003) 777–784.
31. M. Kutz, Handbook of Materials Selection, Chap. 2, 2002 John Wiley & Sons, Inc., NewYork
32. G.A. Gogotsi, Fracture Toughness Studies on V-Notched Ceramic Specimens, Strength of Materials, 32 (2000) 81-85.
33. A. Nastik, A. Merati and and M.Bielawski, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, Mater. Sci. Technol., 31 (2015) 773–783.
34. K. Strecker, S. Ribeiro and N. Hoffmann, Fracture toughness measurements of LPS-SiC: a comparison of the indentation technique and the SEVNB method, Mater. Res., 8 (2005) 121–124.
35. I. Adamovich, The 2017 Plasma Roadmap: Low temperature plasma science and technology, Phys. D Appl. Phys., 50 (2017) 1–46.
36. A. Vardelle, The 2016 Plasma Roadmap: Low temperature plasma science and technology, Therm. Spray Technol., 25 (2016) 1376-1440.
37. M. Gell, E.H. Jordan and Y.H. Sohn, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surf. Coatings Technol., 146 (2001) 48–54.
38. P.D. and P. Chawla Vikas, Sidhu Buta Singh, S., Performance of Plasma Sprayed Nanostructured and Conventional Coatings, F Aust. Ceram. Soc. 44 (2008) 56–62.
39. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, Therm. Spray Technol., 16 (2007) 40–63.
40. D. Ghosh, A.K. Shukla and H. Roy, Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications, Inst. Eng. 95 (2014) 57–64.
41. N.B. Dahotre. and S. Nayak, Nanocoatings for engine application, Surf. Coatings Technol., 194 (2005) 58–67.
42. R.F. Bunshah, Handbook of Hard Coatings: Deposition Technolgies, Properties and Applications, 1st ed., William Andrew, (2000).
43. H. Ghayour, M. Abdellahi and M. Bahmanpour, Optimization of the high energy ball-milling: Modeling and parametric study, Powder Technology, 291 (2016) 7–13.
44. A. Davoodi, M. Pakshir, and M. Babaiee, A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media, Corrosion Science, 53 (2011) 399–408.
45. V. Belashchenko and M. Dratwinski, Thermal Spraying for Power Generation Components, 1st ed., Wiley-VCH Verlag GmbH, 2007.
46. M.K. Singla, H. Singh and V. Chawla, Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review, Miner. Mater. Charact. Eng., 10 (2011) 717–726.
47. D.K. Shetty, I.G. Wright, and P.N. Mincer, Indentation fracture of WC-Co cermets, Journal of Materials Science, 20 (1985) 1873-1882.
48. M. Toozandehjani, K.A. Matori, F. Ostovan, S. Abdul Aziz, and M.S. Mamat, Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy, Materials (Basel), 10 (2017) 1-17.
49. J.B. Rao, G.J. Catherin, I.N. Murthy, D.V. Rao, and B.N. Raju, Production of Nano Structured Silicon Carbide by High Energy Ball Milling, Int. J. Eng. Sci. Technol., 3 (4)( 2011) 82-88.
50. Sh. Dong, B. Song and B. Hansz, Microstructure and properties of Cr2O3 coating deposited by plasma spraying and dry-ice blasting, Surf. Coatings Technol., 225 (2013) 58–65.
51. C.P. Bergmann and J. Vicenzi, Protection Against Erosive Wear Using Thermal Sprayed Cermet: A Review, springer, 2011.
52. A. Vencl, S. Arostegui, and G. Favaro, Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections, Tribology International, 44 (2011) 1281–1288.
53. M. Harju, T. Mantyla, K. Vaha-Heikkila, Water adsorption on plasma sprayed transition metal oxides, Appl. Surf. Sci., 249 (2005) 115–126.
54. F. Onoue, K. Tsuji, X-Ray Elemental Imaging in Depth by Combination of FE-SEM-EDS and Glow Discharge Sputtering, ISIJ Int., 53 (2013) 1939–1942.
55. W. Chi, S. Sampath and H. Wang, Ambient and high-temperature thermal conductivity of thermal sprayed coatings, Therm. Spray Technol., 15 (2006) 773–778.
56. K. W. Schlichting, N.P. Padture and P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia, Mater. Sci., 36 (2001) 3003–3010.
57. R.G. Munro, Material Properties of a Sintered α-SiC, Phys. Chem. Ref. Data., 26 (2009) 1195.
58. E.M. García, Optimizing the sintering of Cr2O3-nano powders for HVOF applications, Carlos III de Madrid, (2012).
59. J. Zhang and V. Desai, Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy, Surf. Coatings Technol., 190 (2005) 98–109.
60. O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, and A.M. Korsunsky, A Study of Phase Transformation at the Surface of a Zirconia Ceramic, in: Proc. World Congr. Eng. 2014 Vol II, 2014, London, UK.
61. N. Zhang and M.A. Zaeem, Competing Mechanisms between Dislocation and Phase Transformation in Plastic Deformation of Single Crystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars, Acta Mater, 120 (2016) 337–347.
62. D.L. Zhang, J. Liang and J. Wu, Processing Ti3Al–SiC nanocomposites using high energy mechanical milling, Mater. Sci. Eng., 375–377 (2004) 911–916.
63. V.P. Singh, A. Sil and R. Jayaganthan, Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings, Trans. Indian Inst. Met., 65 (2012) 1–12.
64. M. Buchmann, R. Gadow and J. Tabelion, Experimental and Numerical residual Stress Analysis of Layer Coated Composites, Mat. Sci. Eng. A, 288 (2000) 154-159.