مشخصه‌یابی پوشش‌های الکتروفورتیک نانوساختار Cux(Mn, Co)3-xO4 برای اتصال‌دهنده‌های پیل‌های سوختی اکسید جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی متالورژی و مواد، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

چکیده

با افزودن عناصر واسطه به اکسید اسپینل منگنز-کبالت (MCO) می‌توان هدایت الکتریکی دمای بالا و چسبندگی پوشش‌های محافظ بر روی اتصال‌دهنده‌های پیل سوختی اکسید جامد را بهبود بخشید. در این پژوهش، نانوپودرهای اسپینل با ترکیبCux(Mn, Co)3-xO4 (x= 0، 2/0 و 4/0) به روش سل-ژل بر پایه‌ی شیوه‌ی پچینی سنتز شد. آلیاژ فولاد زنگ‌نزن 430 به عنوان اتصال دهنده با استفاده از روش لایه نشانی الکتروفورتیک (EPD) توسط ترکیبات اکسید اسپینل پوشش‌دهی شد. براساس یکنواختی ریز ساختار پوشش‌ها پارامتر‌های بهینه زمان 1 دقیقه و ولتاژ لایه نشانی60 ولت انتخاب شد. در ادامه سینتیک لایه نشانی بر اساس مدل بالدیسری در 60 ولت برای نمونه‌های Cu0.2MCO وCu0.4MCO بررسی شد. تف جوشی نمونه‌های پوشش داده شده در شرایط احیایی- اکسیدی در دو مرحله انجام گرفت. فاز و ریزساختار پودر‌های سنتز شده و پوشش‌ها به ترتیب به وسیله آزمون پراش اشعه ایکس (XRD) و میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM) مجهز به طیف سنجی تفرق انرژی (EDS) مشخصه‌یابی شد. نتایج آزمون مقاومت ویژه سطحی غیرهمدما در محدوده دمایی oC 800-550 نشان داد که نمونه Cu0.2MCO کمترین مقدار مقاومت ویژه سطحی (ASR) (mΩ cm2 2/3) با انرژی فعالسازی ماکزیمم kJ/mole2/48Ea= را نشان داد.

کلیدواژه‌ها


1. D.J. Brett, A. Atkinson, N.P. Brandon and S.J. Skinner, Intermediate temperature solid oxide fuel cells, Chem Soc Rev, 37 (2008) 1568-1578.
2. W.Z. Zhu and S.C. Deevi, Development of interconnect materials for solid oxide fuel cells, Materials Science and Engineering: A, 348 (2003) 227-243.
3. J.W. Fergus, Metallic interconnects for solid oxide fuel cells, Materials Science and Engineering: A, 397 (2005) 271-283.
4. A. Evans, A. Bieberle-Hütter, H. Galinski, J.L.M. Rupp, T. Ryll, B. Scherrer, R. Tölke and L.J. Gauckler, Micro-solid oxide fuel cells: status, challenges, and chances, Monatshefte für Chemie - Chemical Monthly, 140 (2009) 975-983.
5. S.A. Muhammed Ali, R.E. Rosli, A. Muchtar, A.B. Sulong, M.R. Somalu and E.H. Majlan, Effect of sintering temperature on surface morphology and electrical properties of samarium-doped ceria carbonate for solid oxide fuel cells, Ceramics International, 41 (2015) 1323-1332.
6. S.R. Akanda, M.E. Walter, N.J. Kidner and M.M. Seabaugh, Mechanical characterization of oxide coating–interconnect interfaces for solid oxide fuel cells, Journal of Power Sources, 210 (2012) 254-262.
7. B. Hua, J. Pu, W. Gong, J. Zhang, F. Lu and L. Jian, Cyclic oxidation of Mn–Co spinel coated SUS 430 alloy in the cathodic atmosphere of solid oxide fuel cells, Journal of Power Sources, 185 (2008) 419-422.
8. R.M. Cardenal, J.F. Diaz Fernandez and A.J. Manovel, Rare Complication After Transaortic Percutaneous Valve Implantation, Rev Esp Cardiol (Engl Ed), 68 (2015) 715.
9. T. Uehara, N. Yasuda, M. Okamoto and Y. Baba, Effect of Mn–Co spinel coating for Fe–Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation, Journal of Power Sources, 196 (2011) 7251-7256.
10. N. Hosseini, M.H. Abbasi, F. Karimzadeh and G.M. Choi, Development of Cu 1.3 Mn 1.7 O 4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects, Journal of Power Sources, 273 (2015) 1073-1083.
11. S.R. Akanda, N.J. Kidner and M.E. Walter, Spinel coatings on metallic interconnects: Effect of reduction heat treatment on performance, Surface and Coatings Technology, 253 (2014) 255-260.
12. L. da Conceição, L. Dessemond, E. Djurado and E.N.S. Muccillo, La0.7Sr0.3MnO3−δ barrier for Cr2O3-forming SOFC interconnect alloy coated by electrostatic spray deposition, Surface and Coatings Technology, 254 (2014) 157-166.
13. H. Ebrahimifar and M. Zandrahimi, Oxidation and electrical behavior of AISI 430 coated with cobalt spinels for SOFC interconnect applications, Surface and Coatings Technology, 206 (2011) 75-81.
14. P. Paknahad, M. Askari and M. Ghorbanzadeh, Application of sol–gel technique to synthesis of copper–cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects, Journal of Power Sources, 266 (2014) 79-87.
15. Z. Yang, G.-G. Xia, G.D. Maupin and J.W. Stevenson, Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications, Surface and Coatings Technology, 201 (2006) 4476-4483.
16. H.R. Farnoush, H. Abdoli and S. Bozorgmehri, Cu-Doped Nano- La0.8Sr0.2MnO3 Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cell Application, Procedia Materials Science, 11 (2015) 628-633.
17. F. Smeacetto, A. De Miranda, S. Cabanas Polo, S. Molin, D. Boccaccini, M. Salvo and A.R. Boccaccini, Electrophoretic deposition of Mn 1.5 Co 1.5 O 4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application, Journal of Power Sources, 280 (2015) 379-386.
18. Z. Yang, G. Xia, X. Li and J. Stevenson, (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications, International Journal of Hydrogen Energy, 32 (2007) 3648-3654.
19. C.J. Dileep Kumar, A. Dekich, H. Wang, Y. Liu, W. Tilson, J. Ganley and J.W. Fergus, Transition Metal Doping of Manganese Cobalt Spinel Oxides for Coating SOFC Interconnects, Journal of the Electrochemical Society, 161 (2013) F47-F53.
20. G. Chen, X. Xin, T. Luo, L. Liu, Y. Zhou, C. Yuan, C. Lin, Z. Zhan and S. Wang, Mn 1.4 Co 1.4 Cu 0.2 O 4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications, Journal of Power Sources, 278 (2015) 230-234.
21. J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu and L. Jian, Oxidation of MnCu 0.5 Co 1.5 O 4 spinel coated SUS430 alloy interconnect in anode and cathode atmospheres for intermediate temperature solid oxide fuel cell, International Journal of Hydrogen Energy, 40 (2015) 1868-1876.
22. Y.A. Attia, Sol-gel processing and applications, Springer Science & Business Media, 2012.
23. Hu, Y. Z., Su, Y. T., Li, C. X., Li, C. J., & Yang, G. J. Dense Mn1. 5Co1. 5O4 coatings with excellent long-term stability and electrical performance under the SOFC cathode environmentApplied Surface Science, (2020), 499: 143726.‏
24. Yousaf, M., Akhtar, M. N., Shah, M. Y., Rauf, S., Mushtaq, N., Noor, A., & Wang, B.. Evaluation of rare earth (Yb, La) doped (Sm3Fe5O12) garnet ferrite membrane for LT-SOFC. International Journal of Hydrogen Energy, (2020).‏
25. Zhao, Q., Geng, S., Gao, X., Chen, G., & Wang, F. Ni/NiFe2 dual-layer coating for SOFC steel interconnects applicationJournal of Power Sources Advances, (2020), 2: 100011.‏
26. Talic, B., Hendriksen, P. V., Wiik, K., & Lein, H. L. Thermal expansion and electrical conductivity of Fe and Cu doped MnCo2O4 spinel. Solid State Ionics,( 2018), 326: 90-99.‏
27. CHENG, Fupeng; SUN, Juncai. Fabrication of a double-layered Co-Mn-O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect. International Journal of Hydrogen Energy, (2019), 44.33: 18415-18424.‏
28. S.T. Hashemi, A.M. Dayaghi, M. Askari and P.E. Gannon, Sol-gel synthesis of Mn 1.5 Co 1.5 O 4 spinel nano powders for coating applications, Materials Research Bulletin, 102 (2018)180-185.
29. J.H. Zhu, M.J. Lewis, S.W. Du and Y.T. Li, CeO 2 -doped (Co,Mn) 3 O 4 coatings for protecting solid oxide fuel cell interconnect alloys, Thin Solid Films, 596 (2015) 179-184.
30. Y. Liu, J.W. Fergus, K. Wang and C. Dela Cruz, Crystal Structure, Chemical Stabilities and Electrical Conductivity of Fe-Doped Manganese Cobalt Spinel Oxides for SOFC Interconnect Coatings, Journal of the Electrochemical Society, 160 (2013) F1316-F1321.
31. J.C.W. Mah, A. Muchtar, M.R. Somalu, M.J. Ghazali and J. Raharjo, Formation of sol–gel derived (Cu,Mn,Co) 3 O 4 spinel and its electrical properties, Ceramics International, 43 (2017) 7641-7646.
32. C. Baldisserri, D. Gardini and C. Galassi, An analysis of current transients during electrophoretic deposition (EPD) from colloidal TiO2 suspensions, J Colloid Interface Sci, 347 (2010) 102-111.
33. B. Ferrari, S. González, R. Moreno and C. Baudín, Multilayer coatings with improved reliability produced by aqueous electrophoretic deposition, Journal of the European Ceramic Society, 26 (2006) 27-36.
34. H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari and F. Moztarzadeh, A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach, Ceramics International, 38 (2012) 6753-6767.
35. S. Molin, A.G. Sabato, H. Javed, G. Cempura, A.R. Boccaccini and F. Smeacetto, Co-deposition of CuO and Mn 1.5 Co 1.5 O 4 powders on Crofer22APU by electrophoretic method: Structural, compositional modifications and corrosion properties, Materials Letters, 218 (2018) 329-333.
36. T. Brylewski, W. Kucza, A. Adamczyk, A. Kruk, M. Stygar, M. Bobruk and J. Dąbrowa, Microstructure and electrical properties of Mn1+xCo2−xO4 (0≤x≤1.5) spinels synthesized using EDTA-gel processes, Ceramics International, 40 (2014) 13873-13882.
37. Birks, N., G.H. Meier, and F.S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge University Press,( 2006).